Strengthening Effect of Extruded Mg-8Sn-2Zn-2Al Alloy: Influence of Micro and Nano-Size Mg2Sn Precipitates

نویسندگان

  • Weili Cheng
  • Yang Bai
  • Lifei Wang
  • Hongxia Wang
  • Liping Bian
  • Hui Yu
چکیده

In this study, Mg-8Sn-2Zn-2Al (TZA822) alloys with varying Mg₂Sn contents prior to extrusion were obtained by different pre-treatments (without and with T4), and the strengthening response related to micro and nano-size Mg₂Sn precipitates in the extruded TZA822 alloys was reported. The results showed that the morphology of nano-size Mg₂Sn precipitates exhibits a significant change in basal plane from rod-like to spherical, owing to the decrement in the fraction of micro-size particles before extrusion. Meanwhile, the spherical Mg₂Sn precipitates provided a much stronger strengthening effect than did the rod-like ones, which was ascribed to uniform dispersion and refinement of spherical precipitates to effectively hinder basal dislocation slip. As a consequence, the extruded TZA822 alloy with T4 showed a higher tensile yield strength (TYS) of 245 MPa, ultimate tensile strength (UTS) of 320 MPa and elongation (EL) of 26.5%, as well as a lower degree of yield asymmetry than their counterpart without T4. Detailed reasons for the strengthening effect were given and analyzed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Equal Channel Angular Pressing Passes on the Microstructures and Tensile Properties of Mg-8Sn-6Zn-2Al Alloy

An I-phase containing Mg-8Sn-6Zn-2Al (wt %; TZA862) alloy was fabricated and subjected to different number of passes of equal channel angular pressing (ECAP) processing at 300 °C. The results showed that the alloys exhibited a bimodal microstructure, which consisted of fine dynamically recrystallized (DRX) grains and coarse non-DRX grains. When increasing the number of ECAP passes from 2 to 6, ...

متن کامل

Ageing behavior of extruded Mg–8.2Gd–3.8Y–1.0Zn–0.4Zr (wt.%) alloy containing LPSO phase and γ′ precipitates

The effect of long period stacking ordered (LPSO) phase and γ' precipitates on the ageing behavior and mechanical properties of the extruded Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr (wt.%) alloy was investigated. The results show that more β' phases precipitate during ageing treatment in the LPSO phase containing alloy so that the LPSO phase containing alloy exhibits a higher age-hardening response than the γ...

متن کامل

Nanoscale precipitates strengthened lanthanum-bearing Mg-3Sn-1Mn alloys through continuous rheo-rolling

We elucidate the effect of lanthanum (La) on the microstructure and mechanical properties of Mg-3Sn-1Mn-xLa (wt.%) alloy plates processed through continuous rheo-rolling for the first time. At x = 0.2 wt.%, La dissolved completely in the α-Mg matrix. As the La content was increased to 0.6 wt.%, a new plate-shaped three-phase compound composed of La5Sn3, Mg2Sn and Mg17La2 phases was formed with ...

متن کامل

Effect of Pre-existing Nano Sized Precipitates on Microstructure and Mechanical Property of Al-0.2wt% Sc Highly Deformed by ARB Process

The effect of pre-existing nano sized precipitates on the mechanisms and rate of grain refinement has been investigated during the severe plastic deformation. A binary Al–0.2Sc alloy, containing coherent Al3Sc particles, of 3.62 nm in diameter has been deformed by accumulative roll bonding up to 10 cycles. The resulting deformed structures were quantitatively analyzed using electron backscatter...

متن کامل

Grain Refinement and Enhancement of Mechanical Properties of Hot Extruded Rare-Earth Containing Magnesium Alloy

The effects of rare earth addition and hot extrusion process on the grain refinement of magnesium alloy were studied. The as-cast Mg-6Al-1Zn (AZ61) alloy had the average grain size of ~ 64 µm and its microstructure consisted of α-Mg and Mg17Al12 phase. By partial substitution of Al with Gd to reach Mg-4.8Gd-1.2Al-1Zn alloy, it was observed that the Mg17Al12 phase disappeared and two new interme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017